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Abstract

The spectrotemporal receptive field (STRF) provides a versatile and integrated
(spectral and temporal) functional characterization of single cells in primary auditory
cortex (AI). We explore in this paper the origin and relationship between several dif-
ferent ways of measuring and analyzing the STRF. Specifically, we demonstrate that
STRFs measured using a spectrotemporally diverse array of broadband stimuli — such
as dynamic ripples, spectrotemporally white noise (STWN), and temporally orthogo-
nal ripple combinations (TORCs) — are very similar, confirming earlier findings that
the STRF is a robust linear descriptor of the cell. We also present a new deterministic
analysis framework that employs the Fourier series to describe the spectrotemporal
modulation frequency content of the stimuli and responses. Additional insights into
the STRF measurements, including the nature and interpretation of measurement er-
rors, is presented using the Fourier transform, coupled to singular-value decomposition
(SVD), and variability analyses including bootstrap. The results promote the utility
of the STRF as a core functional descriptor of neurons in AI.

Key Words: spectrotemporal receptive field, modulation transfer function, auditory
cortex, linearity, stimulus invariance, ripple, variability, singular-value decomposition, ferret
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1 Introduction

It has been over twenty years since the spectrotemporal receptive field (STRF) was conceived
to overcome limitations, both empirical and theoretical, associated with traditional func-
tional measurements of auditory neurons (Hermes et al., 1981; Aertsen and Johannesma,
1981b). The traditional approach was associated with simple, easily manipulable stimuli,
such as clicks and tones, and relied on the experimenter to impose certain conditions and
then observe their effects. In contrast, the STRF was associated with more diverse stimuli,
characterized by randomly varying conditions, and an approach labeled reverse correlation,
by which the neuron informs the experimenter, via action potentials, of the conditions that
were of interest to it (de Boer and de Jongh, 1978; Eggermont et al., 1983b). Addition-
ally, while previous measurements typically probed neurons’ sensitivities to the spectral or
temporal dimensions of sound separately, the STRF was based on the more general thesis
that the interdependence of these dimensions forms an irreducible Gestalt part of a neu-
ron’s sensitivity (Smolders et al., 1979; Eggermont et al., 1981; Johannesma and Eggermont,
1983). Furthermore, the STRF neatly fit within a rigorous analytical framework, bolstered
by the fields of time-frequency analysis (Cohen, 1995) and nonlinear systems theory (Egger-
mont, 1993), within which the functionality of neurons could, in principle, be systematically
explored to any level of detail.

The STRF describes the linear relationship between the time-dependent spike rate of a
neuron and the time- and frequency-dependent energy — in short, the dynamic spectrum —
of a stimulus. In order to measure the STRF, the reverse-correlation approach prescribes
computing the average dynamic spectrum of those portions of a stimulus preceding the
neuron’s spikes. In this context, the STRF is commonly interpreted as the spectrotemporal
pattern that optimally activates a neuron (Young, 1998). Theoretically, as long as all patterns
occur randomly, independently, and equiprobably, the STRF can be revealed by this “spike-
triggered average” (Eggermont, 1993).

Although the STRF has been slow to mature, it is now increasingly used to study the
physiology of central auditory neurons. In retrospect, the often slow pace of progress can
be partially attributed to the reverse-correlation methodology, which remains fairly opaque.
In particular, reverse correlation provides no straightforward formal basis for describing the
effectiveness of, or relations between, specific stimuli, because only the average statistics of
stimuli are specified. For example, Gaussian broad-band noise, an ideal stimulus from the
reverse-correlation standpoint, is often ineffective when applied to central auditory neurons
(but see (Keller and Takahashi, 2000)). Meanwhile, a range of other stimuli and associated
techniques have been auditioned, many of which have fared better, including randomly mod-
ulated broad-band noise (Miller et al., 2002; Escab́ı and Schreiner, 2002), random sequences
of tones or chords (Aertsen and Johannesma, 1981a; Epping and Eggermont, 1985; Schafer
et al., 1992; deCharms et al., 1998; Theunissen et al., 2000; Rutkowski et al., 2002), and
natural stimuli (Aertsen and Johannesma, 1981a; Yeshurun et al., 1987; Schafer et al., 1992;
Theunissen et al., 2000; Sen et al., 2001). While it is sometimes implied that the auditory
system processes different stimuli differently, it has not been made clear, because of the lack
of vocabulary, to what extent different stimulation methods should yield different results.
Additionally, most of the employed stimuli share randomness in their spectrotemporal de-
sign, in accordance with the reverse-correlation approach, but this style of stimulation is
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bound to be inefficient (Victor and Knight, 1979; Sutter, 1992).
Because of these shortcomings, we endeavored to record a deterministic and analytical

reformulation of spectrotemporal reverse correlation (Klein et al., 2000). The roots of this
new methodology are in the Fourier-based analysis (Papoulis, 1962) of any given stimulus
in terms of its spectrotemporal modulation frequency content. Each spectrotemporal mod-
ulation frequency is the conjunction of a spectral and a temporal modulation frequency;
the higher the spectral modulation frequency, the sharper the spectral feature (e.g., sharp
peaks or edges in the spectrum), and the higher the temporal modulation frequency, the
more abruptly that feature changes in time. As a population, central auditory neurons only
respond linearly to a select range of low spectral and temporal modulation frequencies (Rees
and Moller, 1983; Shamma et al., 1995; Schreiner and Calhoun, 1995; Kowalski et al., 1996a;
Depireux et al., 2001; Sen et al., 2001; Miller et al., 2002; Escab́ı and Schreiner, 2002). Not
surprisingly, the most fruitful stimuli have had their spectrotemporal modulation frequency
content either explicitly or implicitly concentrated within this relevant range. Our approach
extends these past successes by making explicit the relations between the spectrotemporal
modulation frequency content of a stimulus, the stimulus duration and bandwidth, and the
accuracy of the STRF measurement. This enables the flexible design of diverse stimuli that
minimize both stimulation time and measurement error, within the constraints of a partic-
ular experiment. These constraints include information about not only the STRF, but also
about the nonlinear and stochastic aspects of the stimulus-response transformation, which
are not directly described by the STRF. Another important advantage of this methodology is
that it can be used to describe the mechanics of STRF measurement with any given stimulus,
thus providing a language with which apparently disparate methods can be discussed.

We focus in this article on three specific types of stimuli with increasing level of complex-
ity, applied in primary auditory cortex (AI) of the ferret. On one side of the spectrum are the
dynamic ripple stimuli (Kowalski et al., 1996a,b; Depireux et al., 2001), which each consist
of a single spectrotemporal modulation frequency. At the other extreme is spectrotemporally
white noise (STWN), which contains many superimposed spectrotemporal modulation fre-
quencies. Intermediate are temporally orthogonal ripple combinations (TORCs), consisting
of special combinations of several spectrotemporal modulation frequencies each. We shall
explore the relations between these stimuli, and compare the responses they evoke and the
resulting STRF measurements. Among the issues addressed are the similarity between the
STRF measurements, their fidelity and noise-robustness, their susceptibility to common neu-
ronal nonlinearities, and the expected amount of data necessary to achieve an measurement
with a desired level of accuracy.

2 Methods

2.1 Theory

In this section, we outline the methodological basis of this study. Its key element is an
analytical description of the STRF-based stimulus-to-response transformation, in terms of
the processing of spectrotemporal modulation frequencies. In this context, the result of
reverse correlation is derived, first assuming that the response is deterministically and linearly
related to the stimulus, and then considering the separate effects of response variability and
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nonlinearity.
At the core of the STRF-based model of neural functionality is the following equation:

r(t) =

∫ ∫
STRF (τ, x) · S(t − τ, x) dτ dx, (1)

where the neuronal response r at any time t is the linear integration of influences arising
from stimulus energy S at different tonotopic locations x (here corresponding to the log-
arithm of frequency) and different times in the past τ . The strength and nature of the
influences — whether they are excitatory (positive) or suppressive (negative) — is described
by STRF (τ, x). In the context of reverse correlation, r(t) is typically taken to be the time-
dependent spike rate of a neuron (Eggermont et al., 1983a; Keller and Takahashi, 2000; Sen
et al., 2001).

2.1.1 The Linear Processing of Spectrotemporal Modulation Frequencies

Our analytical description of dynamic spectra is based upon the Fourier series (Papoulis,
1962), using elemental Fourier components, illustrated in Figure 1A, which are cosine waves
as a function of both t and x: a ·cos(2πwt+2πΩx+ψ). The wave has a peak value of a and a
starting phase of ψ. The wave frequency is w cycles/second (Hz) along t and Ω cycles/octave
(cyc/oct) along x. Since the dynamic spectrum details the modulation of acoustic energy
as a function of both x and t, these frequencies are referred to as modulation frequencies:
spectral (Ω) and temporal (w). A single Fourier component is said to consist of a single
spectrotemporal modulation frequency, defined by a specific (w, Ω) pair. Just as a sum of pure
tones of various frequencies, amplitudes, and phases can describe any acoustic waveform over
a finite duration, a sum of various spectrotemporal modulation frequencies (with appropriate
amplitudes and phases) can describe any dynamic spectrum over a finite duration T and
bandwidth X. Further, just as the frequency content of an acoustic waveform (i.e., the
amplitudes and phases of its constituent tones) is described by its (Fourier) spectrum, the
spectrotemporal modulation frequency content of a dynamic spectrum is described by its
spectrotemporal modulation spectrum (MSST).

When the STRF is recast as operating upon the MSST, one arrives at a complementary
description called the spectrotemporal modulation transfer function (MTFST). The MTFST,
which is given by the Fourier-series description of the STRF, details the linear neural process-
ing of spectrotemporal modulation frequencies. Such processing is already under study in
auditory neurophysiology (Kowalski et al., 1996a,b; Depireux et al., 2001; Miller et al., 2001,
2002; Escab́ı and Schreiner, 2002) and psychoacoustics (Chi et al., 1999), and is also being
investigated for various signal-processing tasks, including audio coding (Atlas and Shamma,
2003; Klein et al., 2003) and speech recognition (Hermmansky, 1999; Nadeu et al., 2001;
Kleinschmidt and Gelbart, 2002; Kleinschmidt, 2002).

The MSST and MTFST are mathematically defined as follows. Consider a dynamic spec-
trum S and an STRF, both given over a finite range of T seconds and X octaves. Using the
exponential form of the Fourier series, S can be expressed by the following sum,

S(t, x) =
∞∑

k=−∞

∞∑
l=−∞

(
a[wk, Ωl]e

jψ[wk,Ωl]
)
ej2π(wkt+Ωlx), (2)



6

0-24 24
w (Hz)

0
1.

4
-1

.4
Ω

 (
cy

c/
oc

t)

0-24 24
w (Hz)

|r[w]|~

0-24 24
w (Hz)

0
1.

4
-1

.4
Ω

 (
cy

c/
oc

t)

latency τ (ms)

lo
g.

 fr
eq

ue
nc

y 
x 

(o
ct

)

0 100

0
3

excitation

suppression

rest

t (ms)τ

x 
(o

ct
. r

el
. 3

80
 H

z)

0 250

0
3.

25

activation

suppression

r[t]

Quadrant 1

Quadrant 4Quadrant 3

Fr
eq

ue
nc

y 
(k

H
z)

.25

.5

1

2

4

8

O
ct

av
es

 r
el

. 2
50

 H
z

0

1

2

3

4

5
w = 8 Hz Ω= 0.4 cyc/oct

A
m

pl
itu

de
 r

el
at

iv
e 

to
 m

ea
n

250 

DFTSTRF[τ,x]

S[t,x] |MSST[w,Ω]|

t (ms)0 250

�

� �

� �

� �

�

Time (ms)0 250 Time (ms)0 

w = -4 Hz Ω= 0.6 cyc/oct

Quadrant 2

|MTFST[w,Ω]|

DFT

DFT
Σ
Ω

Σ
ΩΣ

τ,x

Figure 1: Fourier-based description of the STRF. A: Examples of the basic components used by the Fourier
Series to describe arbitrary dynamic-spectra and STRFs. They are cosine waves as functions of t (time)
and x (log-frequency), with ‘temporal modulation frequency’ (along t) of w cycles/second (Hz) and ‘spectral
modulation frequency’ (along x) of Ω cycles/octave (cyc/oct). If w and Ω have the same sign, the spectral
profile drifts toward lower x’s over time; otherwise, it drifts upward. B: An STRF [τ, x], derived from an
actual measurement, detailing how stimulus energy at various x’s linearly influences the response at various
latencies τ . Positive influence (activation) is represented by hotter colors (e.g., red), and negative influence
(suppression) by cooler colors (e.g., blue). C: The magnitude of MTFST [w, Ω], obtained from the Discrete
Fourier Transform (DFT) of the STRF in B (over T = 250 ms and X = 5 oct), indicating the amplitudes of
the Fourier components required to describe the STRF. The phases are not shown. The points corresponding
to the components from A are outlined by black boxes. Quadrants 3 and 4 are the complex conjugates of
Quadrants 1 and 2, and are not shown in subsequent figures. D: Dynamic spectrum S[t, x] of a 250 ms
segment of a ferret vocalization, computed using a cochlea-like filter bank (Yang et al., 1992). Overlaid is
a contour of the STRF [−τ, x] (from B) highlighting its interpretation as the spectrotemporal pattern that
maximally activates the neuron. E: The magnitude of MSST [w, Ω], indicating the amplitudes of the Fourier
components required to describe S[t, x] from D. Overlaid is a contour of MTFST [w,−Ω], highlighting the
modulation frequencies important for determining the response via Eq. (3). F: The response r[t], produced
by temporally convolving the STRF with S, and summing over x. The overlaid STRF depicts this operation
at an instant t, when the neuron is maximally activated. G: The Discrete Fourier Transform of the response
r̃[w] (only magnitudes are shown), produced by multiplying MTFST [w,−Ω] with MSST [w, Ω], and summing
over Ω, as per Eq. (3).
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where e is the base of the natural logarithm, j =
√−1, k and l are integers, wk = k/T , and

Ωl = l/X. This is perhaps the simplest form of the Fourier series to use, although it employs
the badly named “complex” exponential functions. These functions are related to the real-
valued Fourier components through the trigonometric identity cos(φ) = 1

2

(
ejφ + e−jφ

)
, etc.

Accordingly, each term in this sum, indexed by k and l, has a complex-conjugate counterpart,
indexed by −k and −l, such that a[wk, Ωl] = a[w−k, Ω−l] and ψ[wk, Ωl] = −ψ[w−k, Ω−l].
Hereforth we will simplify the notation by dropping the k and l subscripts, however keeping
in mind that w and Ω are discrete-valued variables (as indicated by the square brackets).
Thus, the amplitudes and phases of the ripple components are given by a[w, Ω] and ψ[w, Ω],
which together form the MSST, MSST [w, Ω] = a[w, Ω]ejψ[w,Ω]. As for the STRF, its Fourier
series description employs the same ripple components, but with different amplitudes b[w, Ω]
and phases θ[w, Ω], which together form the MTFST, MTFST [w, Ω] = b[w, Ω]ejθ[w,Ω].

In practice, S(t, x) is represented on a computer by discrete samples, S[tk, xl] = S(k∆t, l∆x),
taken at a rate of 1/∆t samples/second and 1/∆x samples/octave, where k and l are inte-
gers. Again, we will drop the k and l subscripts, however keeping in mind that t and x are
now discrete-valued variables. By the sampling theorem (Oppenheim and Schafer, 1989),
this assumes that S is sufficiently smooth; that is, it can be described by a limited num-
ber of temporal and spectral modulation frequencies no higher than 1/(2∆t) and 1/(2∆x),
respectively. Within these limits, MSST [w, Ω] is then obtained by computing the Discrete
Fourier Transform (DFT) of S[t, x] (using the Fast Fourier Transform, or FFT, algorithm)
(Oppenheim and Schafer, 1989). Analogously, MTFST [w, Ω] is obtainable via the (Discrete)
Fourier Transform of STRF [t, x]. An example STRF and corresponding MTFST magnitude
is shown in Figures 1B and C, and an example dynamic spectrum and corresponding MSST

magnitude is shown in Figures 1D and E.
Since the response, r(t), depends only on time, its Fourier-series description utilizes

only temporal modulation frequencies. It can be derived by inserting the Fourier-series
descriptions of S and STRF into Eq. (1) and carrying out the integration. The result is
such that the Fourier Transform of r[t] (the sampled response), will have the form

r̃[w] =
∑

Ω

MTFST [w,−Ω] · MSST [w, Ω] =
∑
Ω

MTFST [w, Ω] · MSST [w,−Ω] (3)

Recall that in Eq. (1) the response was obtained by integrating over the spectral axis (x)
after temporally convolving the dynamic spectrum with the STRF (illustrated in Figures
1D and F); here, the convolution is realized via the multiplication of Fourier Transforms1

(Oppenheim and Schafer, 1989), and the integration over x is replaced by a summation over
Ω (illustrated in Figures 1E and G). Therefore, each frequency w in the response results
from all spectrotemporal modulation frequencies in the stimulus sharing the same w.

2.1.2 Fourier-based Reformulation of Spectrotemporal Reverse Correlation

The STRF was in Section 2.1.1 recast in terms of the processing of spectrotemporal modu-
lation frequencies. The result of spectrotemporal reverse correlation will now be derived in
this context.

1Strictly speaking, this implements a circular convolution. If the stimulus is not periodic, this can be
converted to a linear convolution by including zeros (silence) before and after the stimulus (Oppenheim and
Schafer, 1989).
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If spike times are quantized, and stimuli are sampled, with a temporal resolution ∆t,
then the average stimulus preceding a neuron’s spikes is proportional to the temporal cross-
correlation between the stimulus and a response, y[t], consisting of the number of spikes
observed in consecutive ∆t intervals (Eggermont et al., 1983b). For now, we assume that
y[t]/∆t, with units of spike rate (spikes/second), is equal to r[t] (the sampled STRF-based
response), whose Fourier Transform r̃[w] was derived in Eq. (3). Cross-correlation is a linear
operation and, much like convolution, it can be realized via the multiplication of Fourier
Transforms2 (Oppenheim and Schafer, 1989). This takes the following form, in the case of
spectrotemporal reverse correlation:

r̃[w] · MS∗
ST [w,−Ω] = MTFST [w, Ω] · |MSST [w,−Ω]|2

+
∑
Ω′ �=Ω

MTFST [w, Ω′]MSST [w,−Ω′]MS∗
ST [w,−Ω]

= MTFST [w, Ω]·(a[w,−Ω])2 + ε̃[w, Ω], (4)

where ∗ denotes complex conjugation and |MSST [w, Ω]| =
√

MSST [w, Ω] · MS∗
ST [w, Ω] =

a[w, Ω] is the magnitude of MSST. Eq. (4) represents the Fourier Transform of the reverse
correlation result.

An important special case exists when |MSST | is flat (a[w, Ω] = a) over the extent of
MTFST that is nonzero, and further ε̃[w, Ω] = 0. Then, Eq. (4) is proportional to the
MTFST, with

MTFST [w, Ω] =
r̃[w] · MS∗

ST [w,−Ω]

a2
, (5)

Since STRF [t, x] is, by definition, the inverse Fourier Transform of MTFST [w, Ω], this im-
plies that, in this special case, reverse correlation will yield a result proportional to the
STRF.

The flat |MSST | requirement is equivalently a requirement that the stimulus contain in
equal strength all spectrotemporal modulation frequencies needed to construct the MTFST.
If the stimulus contains a subset of the necessary modulation frequencies, then only part
of the MTFST can be constructed; the MTFST will be filtered. The ε̃ = 0 requirement is
not so simply stated. This is a systematic stimulus-induced error dependent upon temporal
correlations between different spectrotemporal modulation frequencies in the stimulus (it
may also be framed in terms of temporal correlations between the stimulus energy at different
tonotopic locations) (Klein et al., 2000; Theunissen et al., 2000). It will be nonzero if the
stimulus contains multiple spectrotemporal modulation frequencies that share the same value
of |w|, and therefore by Eq. (3) evoke the same frequency in the response. For a general
stimulus, ε̃ will not be zero, or even small, and therefore one of three methods must be
used to eliminate or reduce its effects: First, if stimuli are sufficiently diverse over time
or over multiple stimuli, then ε̃ asymptotically approaches zero as the stimulus duration
or the number of stimuli increases (Klein et al., 2000); second, specially designed stimuli
may be employed for which ε̃ is zero (Kvale et al., 1998; Klein et al., 2000); and third,
additional computations may be undertaken to try and adjust for the correlations in the
stimulus (Aertsen et al., 1980; Aertsen and Johannesma, 1981a; Theunissen et al., 2000). In
this article, we concentrate on the first two of these methods.

2Modulo the previous note concerning circular convolution
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Thus far, we have assumed that the response is deterministically and linearly related to
the dynamic spectrum. In the next two sections, we relax these assumptions and consider
how response variability and nonlinearity effects the real-world results. Accordingly, Eq. (5)
is henceforth treated as a measurement of the MTFST (and subsequently the STRF), using
an observed response that is not necessarily fully described by the STRF.

2.1.3 Reliability of the STRF Measurement

We have assumed thus far that the transformation from stimulus to response is deterministic.
However, in response to identical stimulus presentations, neuronal responses exhibit inherent
variability (Shadlen and Newsome, 1998), and so the result of reverse correlation is somewhat
indeterminate. Therefore, Eq. (4) should be interpreted as the mean result, which would be
obtained by averaging the results of an infinite number of identical experiments. Due to the
linearity of reverse correlation, this is also the result obtained if r[t] is taken to be the mean
of y[t]/∆t (the mean time-dependent spike rate).

This mean result is called the signal. The difference between the actual measurement
and its mean is called noise. The exact form of the noise varies from measurement to
measurement. The mean squared-magnitude of the noise, as a function of t and x, is called
the variance of the measurement (the square of the standard error). The overall reliability
of the measurement can be gauged from the signal-to-noise ratio, SNR = P/ 〈σ2〉, which
is the average power (squared-magnitude) of the signal (P ) relative to the average variance
of the noise (〈σ2〉), where the averages are performed over all t and x. Note that both P
and 〈σ2〉 are preserved by the Fourier Transform (Papoulis, 1962; Oppenheim and Schafer,
1989), and therefore the SNR of STRF [t, x] is identical to that of MTFST [w, Ω] (with the
averages performed over w and Ω).

With this in mind, the signal and noise components of the SNR can be directly traced
through Eq. (5) to the response. Here, the variance of the MTFST is found to be

V ar {MTFST [w, Ω]} =
V ar {r̃[w]} |MSST [w,−Ω]|2

a4
=

V ar {r̃[w]}
a2

, (6)

since r̃[w] is the only source of variance.
Analogously, the squared-magnitude (power) of the MTFST is

|MTFST [w, Ω]|2 =
|r̃[w]|2

a2
. (7)

If r is taken to be the mean response, this equation describes the signal power. If instead r
denotes the actual response, then the resulting MTFST measurement (and equivalently, the
STRF measurement) will be composed of signal plus noise, and therefore its average power
will exceed P by 〈σ2〉, provided the signal and noise components are uncorrelated.

In summary, response variability is a source of error in the STRF measurement. This
is referred to as non-systematic error, since its exact form varies from measurement to
measurement. The expected size of the error is quantified by 〈σ2〉. At the same time, the
signal power (P ) and response power are closely related. Therefore, stimuli that maximize the
response power relative to the response variance will result more reliable STRF measurements
(higher SNR). Note also that, in theory, the SNR of the STRF measurement could be
obtained directly from the response, without actually computing the STRF.
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2.1.4 Nonlinear Interference

We have assumed so far that a purely linear relationship exists between modulations in
the dynamic spectrum and modulations of the mean spike rate. In reality, nonlinearities
such as rectification (the strictly positive nature of the spike rate) and synaptic depression
(Chance et al., 1998; Carandini et al., 2002) introduce additional response components. To
the extent that these components are correlated with the stimulus, they result in, systematic,
stimulus-dependent errors to the STRF measurement.

A detailed accounting for various nonlinearities is not given here. Suffice it to say that
a portion of the response can be described by Eq. (1), and the remaining nonlinear portion
may be described by additional terms in a Volterra or Wiener functional expansion, which
have long been used in neuroscience (Eggermont, 1993) and systems theory (Schetzen, 1980).
The portion of the nonlinearity manifest at the odd- and even-numbered terms of the expan-
sions is dubbed odd- and even-ordered nonlinearity, respectively. Fourier-based descriptions
of the input-output characteristics of such systems are already well studied (e.g., (Victor and
Knight, 1979; Victor and Shapley, 1980; Boyd et al., 1983)). They describe how multiple
stimulus frequencies (e.g., spectrotemporal modulation frequencies) interact to form nonlin-
ear response frequencies, or distortion products. It is those distortion products manifested at
frequencies overlapping with the linear portion of the response that interfere with the STRF
measurement.

Knowledge about the stimulus dependence of distortion products facilitates the detec-
tion, identification, and extraction of nonlinear response elements (Spekreijse and Oosting,
1970; Victor and Shapley, 1980; Boyd et al., 1983). For example, odd- and even-ordered non-
linearities are distinct in that their distortion products are composed of products of odd and
even numbers of stimulus elements, respectively. By straightforward trigonometry, one can
determine the possible response frequencies that may be observed for a stimulus of known
(or cleverly designed) composition, and further determine on how the amplitude of these
distortion products will change if a gain is applied to the stimulus.

2.2 Application of the Methodology

We now detail how the above methodology is exploited by the methods used in this study.

2.2.1 Stimulus Realization and Delivery

A stimulus is designed by first specifying its MSST. Recall from Section 2.1.2 that the
spectrotemporal modulation frequencies contained in the stimulus are used to reconstruct
the STRF. Through the properties of the Fourier Series described in Section 2.1.1, the set
of frequencies required for this construction is defined by four parameters: T and X, the
temporal extent (memory) and spectral extent (bandwidth) of STRF; and wc and Ωc, the
maximum temporal and spectral modulation frequencies in MTFST. For all results reported
here, T was 250 ms, X was 5 octaves, wc was 24 Hz, and Ωc was 1.4 cyc/oct. These values
were chosen a priori based upon the likely structure of STRFs in AI, as inferred from previous
studies (Kowalski et al., 1996a,b; Depireux et al., 2001).

The requisite set of modulation frequencies need not be contained within a single stimulus;
it may be divided among multiple stimuli. Stimuli thus devised are used to independently



11

reconstruct different areas of the MTFST, which are finally combined to form the complete
measurement. Some benefits of this scheme include the reduction of measurement errors and
the option of using short-duration stimuli (Klein et al., 2000).

The MSST design subsequently specifies (via an inverse Fourier Transform) a desired
or “target” dynamic spectrum. We realized this target with a sum of amplitude-modulated
(AM) tones of various carrier frequencies (typically 100 tones per octave) and random phases
(Kowalski et al., 1996a). First, the target is scaled so that its values lie within ±90% of the
mean value. The mean value, which corresponds to the mean amplitude of the tones, is set
10–20 dB above the neuron’s threshold (measured previously with pure tones). Finally, the
AM pattern of each tone is specified by the cross-section of the target at the corresponding
spectral location.

Three types of stimuli are used in this study: dynamic-ripple stimuli, temporally orthog-
onal ripple combinations (TORCs), and spectrotemporally white noise (STWN). As exem-
plified in Figure 2, they distribute spectrotemporal modulation frequencies among stimuli
in different ways. Due to the peak-amplitude constraint on the dynamic spectra, they also
employ markedly different modulation-frequency amplitudes (a); increasing the number of
modulation frequencies in a stimulus (implying more complex modulations) generally re-
quires the amplitude of each frequency to be decreased so that their sum is contained within
a given range. In any case, the amplitudes of all modulation frequencies within a given stim-
ulus were identical. If a stimulus contained multiple modulation frequencies, their phases
were randomly assigned; otherwise they were (arbitrarily) set to zero. Additional details
about these stimuli are provided later in Section 3.1.

w (Hz)

 Ω (cyc/oct)

STWN (1.0)

TORC (5.4)

Ripple (17.2)

4 24

0.2

-8 0

a

Figure 2: The MSST magnitudes
are illustrated for members of each
of the three stimulus types —
dynamic-ripple stimuli, TORCs,
and STWN. The stimuli all have
the same duration (250 ms), and
contain 1, 6, and 90 spectrotem-
poral modulation frequencies, re-
spectively. By virtue of the dy-
namic range constraint on the in-
tensities of the dynamic spectrum,
the stimuli must employ different
modulation-frequency amplitudes
a. The employed amplitudes, rela-
tive to those of the STWN stimu-
lus, are indicated in parentheses.

The Fourier series endows dynamic spectra, thus designed, with a common periodicity
of T = 250 ms and X = 5 octaves. One spectral period was realized in each stimulus,
whose 5-octave bandwidth was centered upon the neuron’s pure-tone tuning curve (measured
previously). The temporal periodicity of the dynamic spectra was exploited; this enabled
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multiple observations of the response, since (assuming the neuron’s memory is less than T
seconds) all temporal periods beyond the first constitute identical stimulus presentations. A
stimulus sweep consisted of a limited number (4 or 12) of stimulus periods, and had a rise
and fall time of 8 ms. Multiple sweeps were presented for each stimulus. Sweeps of different
stimuli, separated by 3–4 seconds of silence, were presented in a pseudorandom order, until
a neuron was exposed 60–120 periods (15–30 s) of each stimulus.

All stimuli were gated and fed through an equalizer into an earphone. Calibration of the
sound delivery system (to obtain a flat frequency response up to 20 kHz) was performed in
situ with the use of a 1/8 in. Brüel & Kjaer 4170 probe microphone. The earphone was
inserted into the ear canal through the wall of the speculum to within 5 mm of the tympanic
membrane. The speculum and microphone setup resembles closely that suggested by Evans
(Evans, 1979). More details on the surgery will be provided below.

2.2.2 Response Measurement and STRF Calculation

Each stimulus resulted in a collection of response observations y[t] (i.e., binned spike trains),
each member of which consists of the number of spikes occurring in successive ∆t = 1 ms
intervals during one stimulus period (see, e.g., Figure 3B). The total number of stimulus
periods used is n. The transient epochs, during the first period of each sweep, were disre-
garded; only the steady-state portion of the response is utilized. The spike rate r[t] was then

estimated from the sample mean of y[t]/∆t: r[t] = 1
n

n∑
i=1

yi[t]/∆t, where yi[t] is the response

to the ith stimulus period. This is the response whose Fourier Transform is used to calculate
the MTFST (and subsequently the STRF), or some portion thereof, via Eq. (5). These
calculations are very simple and are completed in MATLAB (Mathworks) in a fraction of a
second.

2.2.3 Reducing Nonlinear Interference with the Inverse-Repeat Method

In this article, we concentrate on even-ordered nonlinearities; they are ubiquitous in the brain
(e.g., due to rectification), and can severely distort the reverse-correlation measurement,
particularly when the stimulus is brief (Swerup, 1978). Fortunately, its ill effects are easily
isolated and extracted by the inverse-repeat method (Moller, 1977; Wickesberg and Geisler,
1984). In its simplest form, this method calls for two stimuli (here, dynamic spectra) that
sum to a constant value. While the linear responses to the two stimuli are opposite in sign,
the even-ordered distortion products are identical (Victor and Shapley, 1980). Therefore,
the even-ordered effects are removed by subtracting the two responses and dividing by two
(or instead isolated by adding the responses). This method is investigated in conjunction
with TORC stimulation.

2.2.4 Signal and Noise Calculations

As mentioned in Section 2.1.3, the measures of signal power (P ) and noise variance (〈σ2〉),
and therefore the SNR, apply to both STRF [t, x] and MTFST [w, Ω]. For a single stimulus-
response pair, a simple relationship was identified in Eq. (6) between the variance of
MTFST [w, Ω] and the variance of r̃[w]. Note that latter variance is, in turn, proportional
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to the variance of ỹ[w] (the Fourier Transform of the response to one stimulus period);
specifically,

V ar {r̃[w]} =
1

n

V ar {ỹ[w]}
∆2

t

. (8)

Thus, the variance of MTFST [w, Ω] could be quickly estimated from the sample variance of
ỹ[w] (across all stimulus periods), without repeating the experiment or subdividing the data.

However, the MTFST measurement may incorporate the measurements from multiple
stimulus-response pairs; if so, its variance will depend on how the individual measurements
are combined. If a point on MTFST [w, Ω] is the average of N measurements, then its variance
will simply tend to scale by 1/N with respect to that of an individual measurement. But more
complicated functions of the individual measurements (such as that used for the dynamic-
ripple stimuli (Depireux et al., 2001)) may obscure the relation between the variance of
the MTFST and that of the constituent responses. In such a case, the bootstrap method
may be employed. This method simulates the randomness of a statistic that is a function
of a collection of identical observations, without repeating the experiment or subdividing
the observations (Efron and Tibshirani, 1993; Politis, 1998). In the present context, a new
MTFST is computed from a new, identical-sized collection of y[t], assembled by selecting
members of the original collection randomly and with replacement. The sample variance of
the MTFST, or some function thereof, is calculated after repeating the process many times
(we used 300), which is feasible due to the simplicity of the computations.

For the sake of equal footing, we used the bootstrap method to estimate the variance of
the MTFST for all stimulus types. After subsequently calculating 〈σ2〉, the SNR was inferred
from the average power of the MTFST, which, as mentioned in Section 2.1.3, approximately
equals P + 〈σ2〉.

2.2.5 Including Systematic Measurement Errors in the Signal-to-Noise Ratio

The SNR quantifies the size of the signal compared to the size of the non-systematic compo-
nent of the measurement error. However, the possible additional contribution of systematic
errors — that is, those induced nonideal stimulus structure (i.e., ε̃ in Eq. 4) and by nonlin-
earities — cause the actual error level of the STRF measurement to exceed that described
by the SNR. The present results present an opportunity to obtain a more “correct” measure
of the SNR, provided that all errors are evenly distributed over the measurement, because
the signal tends to be concentrated in an early region of the measurement between 0 and 125
ms. Accordingly, a corrected SNR measure, SNRcor, was obtained after dividing the average
power of the early region by the average power of the late (post 125 ms) region. Note that
SNRcor should be less than or equal to SNR (modulo the inaccuracies in measuring SNR
and SNRcor), with equality when there are no systematic errors.

2.2.6 Error Reduction with the Singular-Value Decomposition

To further reduce errors in the STRF measurement, we investigated the singular-value de-
composition (SVD), applied to either STRF [t, x] or MTFST [w, Ω] (which are both just
matrices of numbers). The SVD is a well-studied tool for resolving the structure of matrices
that are corrupted by errors (Stewart, 1993; Hansen, 1998). It works by breaking up an
arbitrary matrix into a sum of separable matrices, which, in the current context, are each
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formed by the product of one temporal vector and one spectral vector. The first matrix
takes the best separable approximation out of the original matrix; the second takes the best
separable approximation out of the remainder, and so on. The importance of each separable
matrix is gauged by its singular value, which is the square root of its average power. The
total number of separable matrices required to describe a matrix (the number of nonzero
singular values) is called the matrix’s rank.

A basic theorem (Stewart, 1991) implies that if the error-free STRF can be well approx-
imated by only a few separable matrices, then the addition of small and evenly distributed
errors will only slightly perturb their form, as they constitute the first few matrices in the
SVD of the STRF measurement. The additional and subsequent matrices required to de-
scribe the measurement will describe mostly errors, and thus should be discarded. In fact,
there are a priori reasons to believe that STRFs are well approximated by low-rank ma-
trices. Typically, cortical STRFs are localized in a compact area of the spectrotemporal
domain and the modulation-frequency domain (Depireux et al., 2001; Miller et al., 2002);
this alone will limit their rank. Still lower limits will be imposed by special structure within
the STRF or the MTFST, such as spectral-temporal separability (Eggermont et al., 1981;
Depireux et al., 2001; Sen et al., 2001), quadrant separability (Depireux et al., 2001), and
temporal symmetry (Simon et al., subm).

In practice, determining which separable matrices should be discarded is a complex prob-
lem (Stewart, 1993; Hansen, 1998). Most approaches use knowledge or assumptions about
the size and structure of the errors to bound the singular values (or functions thereof) of those
separable matrices describing mostly errors. Through simulations, we found that methods
based solely on variability analysis tended to underestimate the size of the errors; instead,
the most generally accurate methods gauged the error level directly from the post-125-ms
region of the STRF measurement (for a similar method see (Sen et al., 2001)). We used the
largest singular value from this region (or its Fourier Transform) to threshold the singular
values of the pre-125-ms region (or its Fourier Transform). In theory, the STRF (or MTFST)
is optimally approximated using only those separable matrices with singular values above
this threshold, and discarding the remainder.

Although this approximation is in some sense optimal, it is still prone to error. As the
error level increases, more and more error leaks into the approximation and, conversely, more
and more of the STRF power is lost under the error threshold (Hansen, 1998). This second
case is of primary interest in this study; we will gauge the proportion of (error-free) STRF
power excluded from the SVD approximation. A naive gauge of this is αSV D, the proportion
of the STRF measurement’s power contained in the SVD remainder (Depireux et al., 2001).
Unfortunately, when the level of measurement error is high, αSV D itself will be inflated,
because much of the remainder will consist of error. However, we can use the bootstrap
method to estimate the size (average variance) of the part of the remainder resulting from
non-systematic errors, and subtracted it out. This leads to a more accurate gauge of the
proportion of lost STRF power, particularly when the systematic errors are small: βSV D, the
average power of the systematic component of the remainder, divided by P . In Section 3.4,
we use αSV D and βSV D together to study how measurement errors effect the performance of
the SVD.
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2.2.7 STRF Comparisons

In this article, the correlation coefficient is used to quantify the similarity between two
different STRF measurements. This takes values between −1 and +1, with +1 indicating
a perfect match. Comparisons are made over the first 125 ms of the measurements, both
before and after the SVD is applied. Note that the correlation coefficients for the pre-SVD
comparisons will be limited by SNRcor; if two identical STRFs are corrupted by independent
and identically distributed errors, the correlation coefficient should approximately equal
SNRcor/(SNRcor+1). To the extent that the SVD approximations result in increased SNRs,
they will allow for higher correlation coefficients, which we modeled as gSNRcor/(gSNRcor+
1), where g represents a multiplicative gain in SNRcor.

2.2.8 Simulations

Simulations were employed in order to verify the performance of these methods under realistic
conditions. The core of a simulation is an STRF (tailor-made or derived from a low-rank
approximation of an actual measurement) and a set of stimuli. The STRF-based responses
to the stimuli are computed via Eq. (3). These responses are then altered; usually they
are rectified and then subjected to another static nonlinearity, such as a squaring function.
The result, representing the time-varying spike rate, is used to create spike trains with
inhomogeneous Poisson statistics (Berry and Meister, 1998; Oram et al., 1999), with a time
step of 50 µs. These spike trains are treated as the responses of a neuron with an unknown
STRF, and are subjected to the very same analyses as the real responses. Wherever the
bootstrap method was employed, its expected performance was simulated against a Monte-
Carlo procedure, employing 300 sets of independent responses with identical spike rates.

2.2.9 Surgery and animal preparation

Data were collected from 16 domestic ferrets (Mustela putorius) supplied by Marshall Farms
(Rochester, NY). The ferrets were anesthetized with sodium pentobarbital (40 mg/kg) and
maintained under deep anesthesia during the surgery. Once the recording session started, a
combination of Ketamine (8 mg/Kg/Hr), Xylazine (1.6 mg/Kg/Hr), Atropine (10 µg/Kg/Hr)
and Dexamethasone (40 µg/Kg/Hr) was given throughout the experiment by continuous
intravenous infusion, together with Dextrose, 5% in Ringer solution, at a rate of 1 cc/Kg/Hr,
to maintain metabolic stability. The ectosylvian gyrus, which includes the primary auditory
cortex, was exposed by craniotomy and the dura was reflected. The contralateral ear canal
was exposed and partly resected, and a cone-shaped speculum containing a miniature speaker
(Sony MDR-E464) was sutured to the meatal stump. For more details on the surgery see
(Shamma et al., 1993).

2.2.10 Recordings, spike sorting, and selection criteria

Action potentials from single units were recorded using glass-insulated tungsten microelec-
trodes with 5–7 MΩ tip impedance at 1 kHz. In each animal, electrode penetrations were
made orthogonal to the cortical surface. In each penetration, cells were typically isolated at
depths of 350–600 µm corresponding to cortical layers III and IV (Shamma et al., 1993). In
12 animals, neural signals were fed through a window discriminator and the time of spike
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occurrence relative to stimulus delivery was stored using a computer. In the other 4 animals,
the neural signals were stored for further processing offline. Using MATLAB software de-
signed in-house, action potentials were then manually classified as belonging to one or more
distinct neurons, and the spike times for each neuron were recorded. The action potentials
assigned to a single neuron met the following criteria: (1) the peaks of the spike waveforms
exceeded 4 times the standard deviation of the entire recording; (2) each spike waveform
was less than 2 ms in duration and consisted of a clear positive deflection followed immedi-
ately by a negative deflection; (3) the spike waveforms were not visibly different from each
other, modulo the noise; (4) the histogram of inter-spike-intervals evidenced a minimum time
between spikes (refractory period) of at least 1 ms. This procedure occasionally produced
units with very low spike counts. After consulting the distribution of spike counts for all
units, units that fired fewer than one spike per two seconds of stimulation were excluded
from further analysis.

Analysis of the dynamic-ripple recordings was published previously (Depireux et al.,
2001). We used here the same selection criteria for those recordings that were used in that
study. Those criteria were somewhat more stringent than those used for the TORC and
STWN recordings; consequently, there are conspicuously fewer instances of low-SNR STRFs
and low spike counts in the dynamic-ripple results, with respect to the TORC and STWN
results.

3 Results

The results of this study are presented as follows. In Section 3.1, we detail the measurement
of a neuron’s STRF using each of the three stimulation types, and we subsequently illustrate
the computation of the SVD-based STRF approximations. In Section 3.2, for neurons whose
STRFs were measured with multiple stimulus types, we examine the similarity between the
multiple measurements and the corresponding SVD approximations, as a function of the
level of measurement error. In Section 3.3, we analyze the origins and stimulus dependence
of the measurement errors. Finally, in Section 3.4, we study how measurement errors effect
the sufficiency of the SVD approximations.

3.1 Overview

In this section, we detail the measurement of a neuron’s STRF using dynamic-ripple stimuli
(Figure 3), TORCs (Figure 4), and STWN (Figure 5), respectively. The MSST magnitudes
for examples of each of these stimulus types are illustrated in Figure 2. The respective
STRF measurements are denoted STRFDR, STRFTORC, and STRFSTWN. Computation of
the SVD-based approximations of the measurements is subsequently detailed.

3.1.1 Dynamic-Ripple Stimuli

For the dynamic-ripple stimuli (Kowalski et al., 1996a; Depireux et al., 2001) shown in Fig-
ure 3, each stimulus is composed of a single spectrotemporal modulation frequency (Fourier
component). It can therefore be considered the auditory equivalent to the drifting sinu-
soidal luminance gratings used in visual neuroscience (De Valois, R.L. and De Valois, K.K.,
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1990). Figure 3A shows the dynamic spectrum of one such stimulus, which has a temporal
modulation rate w of −8 Hz and a spectral modulation rate Ω of 0.2 cyc/oct.

The response (r[t]) to this stimulus (B through D) exhibits both linear and nonlinear
aspects, as well as variability. According to the linear model of Eq. (3), the response should
be a pure 8 Hz sinusoid, with amplitude and phase determined by MTFST [8, 0.2]. Clearly,
r[t] (C: blue) is modulated at 8 Hz, but it also contains nonlinear components. The (Discrete)
Fourier Transform of r[t] (r̃[w], shown in D) makes this explicit: In addition to a prominent
8 Hz component (in red), distortion products (in green) with frequencies of 0 Hz (the “DC”
or average of r[t] over t) and 16 Hz are plainly visible. Given the stimulus composition, these
distortion products betray the presence of 2nd-order, and possibly 0th-order (“spontaneous”
activity), nonlinearity (both of which are even-ordered). With respect to the linear plus DC
description (C: red curve), including the 16 Hz distortion product (C: black) better accounts
for the sharpness and non-negative nature of the response.

The remaining portion of the response looks like noise. It is the manifestation of the
period-to-period response variability evident in B. In the Fourier Transform (D), it takes the
form of a shallow baseline of energy that extends over all frequencies. Note that the square-
root of the response variance (i.e., the standard error), calculated via Eq. 8, is similarly
distributed over the components of r̃[w] (D: black curve).

The existence of response components due to nonlinearity and variability does not nec-
essarily imply that they interfere with the STRF measurement. Since the stimulus consists
of a single spectrotemporal modulation frequency with a temporal component of 8 Hz, only
the 8 Hz component of the response is correlated with the stimulus, and ε̃ in Eq. (4) is zero.
The only source of error is the portion of the nonlinearity and variability that happens to
be manifest at 8 Hz. The reverse-correlation result is shown in Figures 3E and F. It consists
of a single spectrotemporal modulation frequency, corresponding to the 8 Hz, 0.2 cyc/oct
component of the STRF. STRFDR is thus assembled; the result after two stimuli and all
stimuli is shown in G and H, and I and J, respectively. It is important to note that, due to
time constraints, these point-by-point measurements of the MTFST were restricted to two
cross-sections, as indicated by the gray outlines in I. The full MTFST was then constructed
from a normalized outer product of these cross-sections (Depireux et al., 2001).

3.1.2 Temporally Orthogonal Ripple Combinations

In contrast to the dynamic-ripple stimuli, the TORC stimuli (Klein et al., 2000) can directly
measure the entirety of the MTFST, because each stimulus is used to measure multiple
points at once. The stimuli are necessarily more complex, containing six spectrotemporal
modulation frequencies (Fourier components) each. However, no two Fourier components in
a given stimulus share the same value of |w| (they are temporally orthogonal; their temporal
correlation is zero); therefore, each spectrotemporal modulation frequency in the stimulus
will evoke a different temporal frequency in the linear part of the response.

The dynamic spectrum of one TORC is shown in Figure 4A. It is composed of six spec-
trotemporal modulation frequencies having the same Ω of 0.2 cyc/oct, but different w’s
spanning the range of 4 to 24 Hz. The associated response (B: in blue) exhibits a complex
modulation of the spike rate. The smoothed response, obtained by discarding the irrelevant
frequencies above 24 Hz, is superimposed in red. In C is a more accurate view of the lin-
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Figure 3: Measuring the STRF
with dynamic-ripple stimuli. A:
Dynamic spectrum of a dynamic-
ripple stimulus with w = −8 Hz
and Ω = 0.2 cyc/oct. 90 stim-
ulus periods were used. B: Ras-
terized spike trains, yi[t], the ith

row indicating with black dots the
spike times during the ith stimu-
lus period, recorded with 1 ms ac-
curacy. C: Time-dependent spike
rate estimate, r[t]: Raw estimate
(blue) (using ∆t = 1 ms), lin-
ear (8 Hz) plus DC (0 Hz) ap-
proximation (red), and the ap-
proximation obtained by includ-
ing the (even-ordered) 16 Hz dis-
tortion product (black). D: Re-
sponse Fourier Transform magni-
tude, clearly showing the linear 8
Hz component (red), nonlinear dis-
tortion products (green), and the
remaining noise component (blue).
Also shown is the square-root of
the response variance (the stan-
dard error) as a function of fre-
quency (black). E, F: The mea-
surements of MTFST and STRFDR

after one stimulus-response pair.
G, H: Same, after two stimuli.
I, J, Same, after all 30 stimuli.
The grey outlines in I indicate the
cross-sections of the MTFST that
were directly measured.

ear part of the response, which was obtained from the inverse-repeat procedure. It is very
similar to the response predicted by STRFDR (Figure 3J), which is plotted in dashed black.
The Fourier Transform of the response (D) confirms the strong presence of the 4 to 24 Hz
components (in red) expected from the linear model. However, with respect to the noise
baseline, the response is weaker than it was for the above dynamic-ripple stimulus.

In the reverse-correlation operation, the 4 Hz response component is orthogonal to all
stimulus components besides the 4 Hz component, the 8 Hz response component is correlated
only with the 8 Hz stimulus component, and so on; ε̃ is again zero. The result is shown in
Figures 4E and F. Already after the first stimulus, six components of STRFTORC are in
place. The corresponding results after the second stimulus (employing a different set of
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Figure 4: Measuring the STRF
with TORCs. A: Dynamic spec-
trum of a TORC with Ω = 0.2
cyc/oct and w’s between 4 and 24
Hz. 75 stimulus periods were used.
B, C: Time-dependent spike rate
estimate, r[t], prior to (B) and af-
ter (C) the inverse-repeat proce-
dure: Raw estimate (blue), lin-
ear plus DC approximation (red)
obtained by discarding frequencies
above 24 Hz, and the response
predicted from the previously ob-
tained STRFDR (dashed black in
C). D: Response Fourier Trans-
form magnitude, clearly showing
the linear 4–24 Hz components
(red) and the remaining noise com-
ponent (blue). Also shown is the
square-root of the response vari-
ance (the standard error) as a
function of frequency (black). E,
F: The measurements of MTFST

and STRFTORC after one inverse-
repeat pair of stimuli. G, H: Same,
after two pairs of stimuli. I, J,
Same, after all 15 pairs of stimuli
(30 total).

spectrotemporal modulation frequencies), and after all stimuli, are shown in G and H, and
I and J, respectively. The final result bears a striking resemblance to STRFDR, despite the
drop in both SNR and SNRcor. This indicates that the linear spectrotemporal processing
of the neuron is robust to changes in the spectrotemporal modulation frequency content of
stimuli.

3.1.3 Spectrotemporally White Noise

If a dynamic-ripple stimulus contains the simplest spectrotemporal pattern, the most com-
plex is contained in spectrotemporally white noise (STWN); its MSST contains all spec-
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trotemporal modulation frequencies (Fourier components) with equal amplitudes and uni-
formly distributed phases. The typically poor efficacy of such stimuli can be improved
somewhat by limiting the MSST to a relevant range of spectral and temporal modulation
frequencies (Klein et al., 2000). Figure 5A shows the dynamic spectrum of one such stim-
ulus, which contained all w’s between 4 and 24 Hz and all Ω’s between 0 and 1.4 cyc/oct.
Although the response shown in B is quite a bit weaker than those observed in Figures 3 and
4, when smoothed (red) it is still comparable to the linear predictions from both STRFDR

(dashed black) and STRFTORC (dashed green); this is despite the fact that, as shown in C,
the 4 to 24 Hz response frequencies predicted by the linear model are barely distinct over
the noise baseline.

This reverse-correlation scenario differs from that of the other two stimulus types. Each
of the linear response frequencies is now the sum effect of multiple Fourier components of
the stimulus sharing the same temporal modulation frequency. Every response frequency
will in turn be correlated with each of the stimulus components sharing the same temporal
modulation frequency. It is therefore not initially clear which stimulus component caused
what component of the response; all points on the MTFST corresponding to a given w cannot
be distinguished. This ambiguity manifests itself in the form of a large ε̃, as evident in Figures
5D and E.

Because ε̃ is dependent upon the (randomly assigned) phases of the MSST, it has an
incoherent structure that is distributed over the entire measurement, and its strength can
be reduced by averaging the results from multiple stimuli with different phases (or by using
more finely spaced w’s, i.e., increasing the base stimulus period T ) (Klein et al., 2000). This
argument also applies to the manifestations of variability and even-ordered nonlinearity
(some odd-ordered distortion products are however not dependent on the phases of the
stimulus frequencies (Victor and Shapley, 1980)). The result obtained after averaging the
results from 30 different stimuli is shown in F and G (approximately the same result would
be obtained by extending T by a factor of 30). Despite a further decrease in SNR and
SNRcor, its similarity to STRFDR (Figure 3J) and STRFTORC (4J) is impressive; the linear
spectrotemporal processing of the neuron has maintained its form for more than an hour,
over vastly different stimulus types.

3.1.4 Application of the Singular-Value Decomposition

In this section, we demonstrate the use of the SVD for producing approximations of the
measurements of the STRF and MTFST. Such approximations represent an optimal trade-
off between error reduction and signal loss, provided the errors are evenly evenly distributed
over the measurements (Stewart, 1993; Hansen, 1998). The proportion of signal lost is gauged
by βSV D (see Methods).

The SVD of the STRFTORC from Figure 4J (again shown in Figure 6A) is illustrated
in Figures 6B through D. The singular values of the first 12 separable matrices from the
SVD are shown in B, along with the error-derived threshold (see Methods) indicated by the
dashed line. The first singular value, corresponding to the separable matrix in C, towers
over the others, and alone exceeds the threshold. The STRF is well described by this
separable matrix, while the sum of the remaining separable matrices, shown in D, consists of
unstructured measurement errors. Indeed, βSV D = 4.8%, indicating that more than 95% of
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Figure 5: Measuring the STRF with STWN. A: Dy-
namic spectrum of a STWN with Ω’s between 0.2 and
1.4 cyc/oct and w’s between 4 and 24 Hz. 75 stimu-
lus periods were used. B: Time-dependent spike rate
estimate, r[t]: Raw estimate (blue), the linear plus DC
approximation (red), and the response predicted from
STRFDR (dashed black) and STRFTORC (dashed green).
C: Response Fourier Transform magnitude. The linear
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sponse variance (the standard error) as a function of fre-
quency (black). D, E: The measurements of MTFST and
STRFSTWN after one stimulus. F, G: Same, averaged
over 30 stimuli.
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the STRF power is captured by this rank-1 approximation. That is, in large part this STRF
represents the product of independent spectral and temporal integration.

In contrast, the SVD of a different neuron’s STRFTORC is shown in Figures 6E through
J. This STRF (in E) does not look separable; for inputs at different tonotopic locations x,
the temporal integration by the neuron (in its network) is not related by a simple scaling
of the same function. In this case, the second singular value (in F) also protrudes above
the threshold, the rank-1 approximation (G) fails to describe the STRF’s obliqueness, and
βSV D is high at 28.2%. After including the second separable matrix (shown in H), the
approximation (in I) is vastly improved (βSV D = 6.7%), and the remainder (J) again chiefly
consists of unstructured errors.

The SVD can alternatively be applied to the MTFST. While the SVD of the full MTFST

yields an approximation identical to that of the STRF, applying the SVD separately to
each of the quadrants of the MTFST will generally produce a different approximation. This
procedure is of interest chiefly because previous studies (using dynamic-ripple stimulation)
have suggested that the MTFST’s of AI neurons are well described as being quadrant-separable
(Kowalski et al., 1996b; Depireux et al., 2001), implying that the SVD of each quadrant of
the MTFST should yield at most one separable matrix of significance. Therefore, if the STRF
is not separable, it could be advantageous (in terms of error reduction) to approximate the
STRF in this manner. This principle is examined in Figure 7, using the non-separable STRF
from Figure 6E. The SVD of each of the upper two quadrants of the MTFST shown in 7B
yields the two sets of singular values in C. In each quadrant, only the first singular value
is pronounced and exceeds the threshold. This indication that the quadrants are indeed
separable is supported upon comparison of the original STRF (in A) with the quadrant-
separable approximation (for which βSV D = 6.6%) and the remainder, shown in D and E,
respectively. Intriguingly, the result is markedly similar to the rank-2 approximation of the
STRF from Figure 6J. By implication, the MTFST from the rank-2 approximation (shown
in H) is very similar that from the quadrant-separable approximation (in F). The Fourier
Transforms of the corresponding remainders (in G and I) are also very similar.

In summary, we have demonstrated the use of the SVD for producing relatively error-free
approximations of the STRF or MTFST measurements. Later, in Section 3.4, we will examine
how well these three types of approximations — the rank-1, rank-2, and quadrant-separable
approximations — apply to the whole of the neuronal population, as a function of the error
level and the type of stimulation.

3.2 Direct Comparisons of STRFs Measured with Different Stim-
ulus Types

In 45 out of 308 neurons whose STRFs we measured, we obtained multiple STRF mea-
surements using two or all three stimulus types. The resemblance between the first 125 ms
of each pair of measurements was quantified by the correlation coefficient (see Methods),
which was computed under four conditions: for the raw (pre-SVD) measurements, and for
the quadrant-separable, rank-2, and rank-1 approximations of the measurements.

The correlation coefficients from the raw comparisons are plotted in Figure 8A versus the
limiting (minimum) SNRcor of the two measurements. The squares, triangles, and circles
correspond to the three possible pairs of stimulus types compared. The trends followed by
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Figure 6: Approximating the STRF with the SVD. A-D: An
STRF that looks separable. A: The original measurement, B:
The singular values (bars) of the separable matrices of the SVD,
and the error-derived threshold (dashed line). C, D: The rank-
1 approximation and the remainder. E-J: An STRF that does
not look separable. F: The singular values (bars) and threshold
(dashed line). G: The rank-1 approximation. H: The second-
separable matrix. I, J: The rank-2 approximation, and the re-
mainder.

all stimulus comparisons are similar. When SNRcor is above 1, the correlation coefficients
are high and are weakly affected by SNRcor. The correlation coefficients are only small when
SNRcor is small; as SNRcor descends to 0, so do the correlation coefficients. This mirrors the
relationship expected from two identical STRFs that are corrupted by independent errors,
as indicated by the solid-black Curve 1. In other words, it the relationship produced when
the linear spectrotemporal processing of the system, summarized by the (error-free) STRF,
is impervious to changes in stimulus type, but the STRF measurement is error-prone.
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Figure 7: Approximating the MTFST with the SVD. A, B: The original STRF measurement and the
corresponding MTFST magnitude (first two quadrants). C: The singular values (bars) and thresholds (dashed
lines) of the first two quadrants of the MTFST. D, E: The quadrant-separable approximation of the STRF
and the remainder. F, G: The MTFST magnitude from the quadrant-separable approximation, and the
Fourier Transform of the remainder. H, I: The MTFST magnitude from the rank-2 approximation (from
Figure 6I), and the Fourier Transform of the remainder (from 6J)
.

Since the SVD approximations act to reduce errors, they should result in higher correla-
tion coefficients, provided the STRF measurements have similar signal components. These
properties are evident in the three dashed curves in 8A, which summarize the correlation
coefficients obtained from the quadrant-separable (Curve 2), rank-2 (Curve 3), and rank-1
(Curve 4) approximations of each pair of measurements (the data points are not shown, for
clarity). The curves fit the combined data from all three types of stimulus comparisons. The
fits were produced by modeling the error reduction as a multiplicative gain g in SNRcor

(see Methods). The values of g used for Curves 2–4 are 1.7, 1.9, and 2.9, respectively; these
values minimized the number of data points deviating more than 0.1 units away from the
curves (providing the most visually pleasing fits).

For all data points exceeding the critical SNRcor = 1 level, Figure 8B shows the complete
range and the average of the correlation coefficients. Again, similar results are obtained no
matter which two stimulus types are compared. For the raw measurements, correlation
coefficients fall between 0.5 and 0.8, with an average of 0.64. The average rises to 0.73
and 0.75 for the quadrant-separable and rank-2 approximations, respectively. For the rank-
1 approximations, the correlation is 0.85 on average, is as high as 0.97, and does not fall
below 0.74. The average correlations are still higher (0.71, 0.78, 0.80, and 0.88, respectively)
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Figure 8: Similarity between STRFs measured with different stimulus types: Dynamic ripple (DR), TORC
(TC) and STWN (WN). DR-TC, e.g., denotes comparisons between the dynamic-ripple and TORC STRFs.
Correlation coefficients were computed between the original (raw) measurements, and between the quadrant-
separable (q-sep), rank-2 and rank-1 approximations of each measurement. A: Correlation coefficients are
plotted versus the minimum SNRcor of the two original measurements. The squares, triangles, and circles
correspond to the raw comparisons; different symbols correspond to the different pairs of stimulus types
compared (see legend). Curve 1 (solid black) is the relationship expected from two identical STRFs with
independent errors. Curves 2, 3, and 4 (dashed curves) are fits to the correlation coefficients obtained from
the quadrant-separable, rank-2, and rank-1 approximations of each measurement, respectively (see text).
B: The complete range (vertical lines) and the average (squares, triangles, and circles) of the correlation
coefficients are shown for all comparisons where the minimum SNRcor was above 1. Also shown (black x’s)
are the average correlation coefficients, for all pairs of stimulus comparisons combined, obtained when the
comparison is further limited to the half-sized rectangular region of the STRF containing the most power
(see, e.g., the dashed box on the top left STRF of Column C). Columns C, D, E: In each row, the STRF
of the same neuron measured with different stimulus types are shown side by side. Shown are either the
rank-1 or rank-2 approximations of the STRFs, depending on what was optimal for the measurement with
the highest SNRcor. Listed to the left are correlation coefficients obtained from each pair of comparisons
and the SNRcor of the original measurements.
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when the comparisons are further restricted to the half-sized rectangular region containing
the most power (e.g., the dashed box in the top row of 8C), as indicated by the x’s. Least
affected are the rank-1 comparisons, suggesting that they are already relatively error free.
Note that these values far surpass those typically produced by comparing the STRFs of
different neurons; for example, if the rank-1 approximation of a neuron’s STRFTORC was
compared to the rank-1 approximation of the subsequent neuron’s STRFSTWN, the average
correlation was 0.03.

Some visual comparisons of STRF measurements are available in Columns C through E
of Figure 8. For each comparison, either the rank-1 or rank-2 approximations are shown,
depending on what was optimal for the STRF with the highest SNRcor. In C are results
from three neurons that were tested with all three stimulus types. A typical rank-1 result is
shown in the top row. The STRFs match in many details, including the suppressive areas
and the multiple excitatory areas. In the middle row is a rank-2 example with somewhat
lower-than-average correlation coefficients. While some features match well across stimuli,
there is an increase in background fluctuations between STRFDR and STRFSTWN that limits
the comparisons. The rank-1 approximations may have been more appropriate here (and
these yielded correlation coefficients over 0.8). In the bottom row is an unusual rank-2
example, where the STRF peak shifts to a higher frequency, thus diminishing the correlation
coefficients. However, SNRcor of the STRFSTWN was only 0.8, so it is difficult to make
definite claims about its structure. Results from additional neurons that were tested with
two of the three stimulus types are provided in D and E. Overall, a wide variety of STRFs
shapes, including unusual “offset” types (E, top row), are well preserved across stimulus
type. To be sure, there is much less variation in STRF shape across stimulus type than
there is across neurons.

In summary, both visual and quantitative comparisons reveal a close resemblance between
the STRFs measured with different stimulus types. The resemblance predictably increases
as the limiting SNRcor of the measurements increases; similarly, using the SVD to reduce
the error level only serves to increase their resemblance. The highest correlation coefficients
result from the rank-1 approximations, indicating that they are the most error-tolerant.
Similar results are obtained no matter which of the three possible pairs of stimulus types
are compared. By the same token, a wide variety of STRFs are observed across neurons.
Together, these observations indicate that linear spectrotemporal processing is a robust
property of AI that takes diverse forms in individual neurons.

3.3 The Sources and Stimulus Dependence of Measurement Error

In Section 3.2, it was shown that the signal component of the STRF measurement, seen
through the corrective lens of the SVD, is not crucially dependent on the stimulus type.
Instead, the ability of the SVD to separate this signal from the measurement errors is crucially
dependent on SNRcor, which may depend the stimulus type. In this section, we examine
the sources contributing to SNRcor and their stimulus dependence.

3.3.1 Systematic Error

The capacity of systematic errors to limit the quality of the measurements is evident in
the relationship between SNR and SNRcor. This relationship, observed over all measure-
ments for each stimulus type, is plotted in Figure 9 (with second-degree polynomial fits
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where appropriate). For both the TORC (A; F, Curve 1) and the STWN (D; F, Curve 4)
measurements, SNRcor shows a clear saturating characteristic as SNR increases. Recall
that SNRcor incorporates both the non-systematic and systematic errors, while the SNR
incorporates only the non-systematic errors. Therefore, as the measurements become more
reliable (SNR increases), the saturation of SNRcor evinces the systematic error that domi-
nates when the non-systematic errors are sufficiently small. The relative significance of the
systematic error component is revealed in the level to which SNRcor is limited in the high
SNR measurements.
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Figure 9: The relationship between SNR and SNRcor across all measurements for each stimulus type,
and second-degree polynomial fits (black curves) when appropriate. The level of saturation of these curves
indicates the relative levels of systematic errors in the measurements. A: TORC. B: TORC without inverse-
repeat, thus retaining systematic errors due to even-order nonlinearities. C: TORC control, discarding half
of the stimulus presentations, D: STWN. E: Dynamic ripple. F: Comparison of polynomial fits: Curves 1–4
are from Figures A–D. Curve 5: STWN, discarding half of the stimuli, thus increasing systematic errors
induced by the stimulus (ε̃). Curve 6: STWN control, discarding half of the stimulus presentations.

Recall that for the TORC measurements (A; F, Curve 1), the inverse-repeat method was
employed in order to remove systematic errors due to even-order nonlinearities. Therefore,
the saturation of SNRcor in the TORC measurements should be worsened if the inverse-
repeat method is not used. Indeed, bypassing the inverse-repeat method did further limit
SNRcor (B; F, Curve 2), by a factor of about 2.5. Note that this is not simply a side effect
of SNR reductions caused by discarding half of the data, for it is not observed if half of the
stimulus presentations are discarded but inverse-repeat is still employed (C; F, Curve 3).

In the STWN measurements (D; F, Curve 4), the systematic errors are much more severe
than in the TORC measurements; the limiting value of SNRcor is at least 4 times lower,
and so SNRcor is much less likely to exceed usable values. SNRcor is also less variable
across the high-SNR measurements; when the measurements are reliable, which is fairly
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often, SNRcor reliably reaches its limited potential. This potential is further cut in half by
discarding half of the stimuli (F, Curve 5), but not by discarding half of the presentations of
each stimulus (Curve 6). In sum, these observations suggest that the errors are dominated
by the nonideality of the STWN stimuli (i.e., ε̃), to which all neurons were exposed. Our
simulations also supported this view. Therefore, at least 4 times as many STWN stimuli
would have to be used in order to raise the SNRcor potential to the level of the TORC
method.

Finally, note that the relationship between SNR and SNRcor is less clearly defined in
the dynamic-ripple measurements (E) (although both SNRcor and SNR often surpass the
values achieved by the other two stimulus types). In our experience, this is largely because
the errors are not uniformly distributed over the dynamic-ripple STRFs (Depireux et al.,
2001), due to the outer-product operation in the construction of the MTFST. As a result,
SNRcor is a less reliable gauge of the overall error level in the dynamic-ripple measurements.

3.3.2 Non-Systematic Error

In Section 3.3.1, it was shown how the potential accuracy of the STRF measurements is
limited by the level of systematic error, which depended on the stimulation method. However,
if a method is to achieve a given level of accuracy within its potential, it is evident in Figure
9 that the SNR (which reflects the level of non-systematic error) must be at least minimally
adequate. In this section, we explore how the SNR is determined from the interplay between
the stimulus, the STRF, and the neuronal response.

To set the stage, recall from Eq. (5) that a single stimulus-response pair results in
the measurement of a set of one or more points on MTFST [w, Ω], which is given by the
spectrotemporal modulation frequencies content of the stimulus. By Eq. (6), the variance
of each point (w, Ω) is a fixed proportion, namely 1/a2, of the variance of the response’s
Fourier Transform at the corresponding (temporal) frequency w (a2 is the power of each of
the spectrotemporal modulation frequencies in the stimulus). Now, consider the whole of
the MTFST measurement, built stimulus-by-stimulus (depicted, e.g., in Figures 4E–J). To
simplify matters, we will first consider the situation in which every point of the measurement
has resulted from a single stimulus-response pair — that is, prior to the TORC inverse-repeat
procedure, the STWN phase-averaging procedure, or the dynamic-ripple outer-product op-
eration. In that case, to find the variance of any point on the MTFST, one needs only to find
the variance of the appropriate response at the appropriate frequency, and weight it by 1/a2.
Consequently, the average variance of the entire MTFST (and STRF) measurement, 〈σ2〉,
is simply 1/a2 times the average variance at all of the relevant frequencies of all responses.
The SNR is then the ratio of P (the STRF signal power) to this number.

What determines the variance a response’s Fourier Transform? Two observations lead
to a simple answer. First, as Figures 3D, 4D, and 5C typify, the variance of r̃[w] is nearly
frequency-invariant. Therefore, the average variance over the relevant frequencies is closely
related to the average variance over all frequencies. Now, the average variance over all fre-
quencies equals the average variance over all times (Papoulis, 1962; Oppenheim and Schafer,
1989), which ties in the second observation: The variance of r[t] is proportional to r[t]/n
(where n is the number of stimulus periods). This originates from a linear relationship be-
tween the sample mean and the sample variance of the binned spike train responses (y[t]),
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which is a widely reported observation (Shadlen and Newsome, 1998). Consequently, the
average variance over time is proportional to the average spike rate over time, r̄. So finally,
all else being equal across stimuli, r̄ (over all responses) can be treated as the lone variable
determining the average variance of the responses over the relevant frequencies. The rela-
tionship observed across all STRF measurements is shown in Figure 10A, where the variance
has been transformed into the variance of a single response period by multiplying by n (thus
correcting for differences in n across measurements). The trend across all neurons is indeed
linear (on this log-log plot, the slopes of the linear fits to the data were very close to 1), and
is only weakly influenced by stimulus type.

In contrast, the choice of stimulus type effects order-of-magnitude differences in a2 (due
to differences in the number of spectrotemporal modulation frequencies per stimulus; recall
Figure 2). This in turn strongly effects the STRF variance 〈σ2〉 for a given average spike
rate r̄. Given the relationship observed between r̄ and average response variance in 10A, the
predicted relationship between r̄ and 〈σ2〉 (again scaled by n) for each of stimulus type is
indicated by the dashed lines in B. Note, however, that for a given neuron, the actual effect
of stimulus type on 〈σ2〉 depends on how r̄ is also affected. Curiously, we have seen little
evidence for a significant effect of stimulus type on r̄. From one type to the next, up to
factor-of-two increases or reductions in r̄ were typical, but this variation is not systematic
and is small compared that of a2.

The actual relationship between the average spike rate and the STRF variance observed
across all STRF measurements is indicated by the data points plotted in B. The discrepancies
between these trends and the dashed lines, where they exist, are easily explained by the fact
that every point of the actual MTFST measurements is not the result of just one stimulus-
response pair, as we have so far assumed. For the STWN stimuli, MTFST [w, Ω] was the
average result from 30 stimulus-response pairs; therefore, its actual variance 〈σ2〉 (black
diamonds) was lower than the black (upper-most) dashed line by a factor of 30. This largely
compensated for the difference in a2 between the STWN and TORC stimuli. Similarly, the
inverse-repeat method effectively averages the results from two sets of stimuli, and so the 〈σ2〉
of the final TORC result (red circles), was cut in half with respect to the red (middle) dashed
line. Finally, we observed that the 〈σ2〉 of the final dynamic-ripple MTFST (blue dots), each
point of which results from the normalized product of two individual measurements, was
typically similar to that of the measured cross-sections alone. Therefore, its relation to r̄
was similar to the black (lower-most) dashed line, albeit with quite a bit of scatter. Overall,
these properties conspired to produce SNR’s that were, on average, a factor of 5 lower in the
TORC measurements than in the dynamic-ripple measurements, and an additional factor of
2 lower in the STWN measurements.

For each stimulus type, the average spike rate r̄ observed across neurons ranged over
roughly two orders of magnitude. Figure 10C shows that the value of r̄ is partially predicted
by the STRF power P , in that r̄, and more strictly its lower bound, tends to grow by the
square-root of P (the black line on this log-log plot has a slope of 1/2). A square-root re-
lationship is expected from the linear response model followed by rectification: Generally
speaking, STRFs (and MTFST’s) with higher magnitudes result in spike rates with pro-
portionally stronger modulations, which, since the spike rate must be positive, result in
proportionally higher r̄’s; meanwhile, P grows as the square of the STRF magnitudes. Since
r̄ translates linearly into variance, this implies that STRFs with higher average power P ,
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Figure 10: The sources and stimulus dependence of
SNR, for the dynamic ripple stimuli (blue dots), TORCs
(red circles), and STWN (black diamonds). A: The lin-
ear relationship between the average spike rate r̄ and the
average variance of the response’s Fourier Transform. r̄
is averaged over all responses. The variance is averaged
over all responses, but only those temporal frequencies of
each response relevant to the MTFST measurement (where
the corresponding MSST magnitude was nonzero). The
variance is scaled by n (the number of stimulus periods)
to correct for differences n across the measurements, and
thus represents the variance of a single response period. B:
(dashed lines) The expected relationships between r̄ and〈
σ2

〉
(scaled by n) in the case where each point of the

MTFST’s is obtained from a single stimulus-response pair.
The actual relationships observed (plotted points) differ
from the dashed lines by an amount predicted by the num-
ber of stimulus-response pairs whose results are averaged to
obtain the final MTFST (see text). C: The lower bound of r̄
is proportional to the square-root of the STRF signal power
P (the diagonal line’s slope is 1/2). The square-root law
is expected from a linear-plus-rectification response model,
but the scatter in r̄ suggests additional sources of variabil-
ity.

although associated with higher absolute levels of variability, have the potential to achieve
higher SNRs; and this potential is realized in those neurons with the lowest r̄ allowed for a
given P . Note that the data from all stimulus types overlap, reinforcing the idea that r̄ is
not significantly affected by stimulus type.
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In summary, the ingredients of SNR are of two largely independent varieties: properties
of the stimulus and properties of the auditory system. The key stimulus properties boil
down to the power in each spectrotemporal modulation frequency a2, to which the SNR
is inversely proportional, and the number of stimulus-response pairs used to measure each
point of the MTFST (including n, the number of periods of each stimulus), to which SNR is
proportional. The system properties reduce to the STRF power P and the average spike rate
r̄, to which the SNR is proportional and inversely proportional, respectively. Furthermore,
r̄ can be seen as the sum of two positive-valued components. One is proportional to the
square-root of P , as predicted by a linear-plus-rectification response model. The other not
obviously related to the STRF, and represents an additional source of variability that varies
in strength from neuron to neuron. The net result is that an increase in P serves to increase
the SNR, while, for a given P , an increase r̄ counteracts this effect.

3.4 Sufficiency and Error Dependence of the SVD-Based Approx-
imations

In Section 3.2, the SVD approximations of STRFs measured with different stimulus types
were found to be highly similar when SNRcor (which reflects the level of measurement error)
was adequate in both measurements. The stimulus dependence of SNRcor was then analyzed
in detail in Section 3.3. In this section, we further examine how the SVD approximations are
influenced by SNRcor. Primarily, we are concerned with the extent to which measurement
errors may prevent the SVD from resolving features of the “true” (error-free) STRF.

For this purpose, it would be useful to know the proportion of the true STRF’s power
lost from an SVD approximation of the measurement. Unfortunately, in the presence of
measurement error, this quantity is not precisely knowable. One way to estimate it is to
compute the proportion of the STRF measurement’s power lost from an SVD approximation,
which we call αSV D (Depireux et al., 2001). In total, we will consider α

(1)
SV D, α

(2)
SV D, and α

(QS)
SV D,

which speak to the sufficiency of the rank-1, rank-2, and quadrant-separable approximations,
respectively. One obvious disadvantage of αSV D is that it is inflated in the presence of
measurement errors (which comprise much of the measurement’s lost power). This is evident

in Figures 11A through C, where α
(1)
SV D (A), α

(2)
SV D (B), and α

(QS)
SV D (C) are plotted versus

SNRcor for all TORC and STWN STRFs (recall that SNRcor is unreliable for the dynamic-
ripple STRFs). The influence of SNRcor on αSV D clearly persists up to high SNRcor’s.

We reduced the dependence of αSV D on the error level by removing the effect of the non-
systematic errors (see Methods). The improved measure, βSV D is a more accurate gauge of
the proportion of lost STRF power, especially when the systematic errors are small (e.g., in
the TORC measurements). In theory, βSV D should be more tolerant than αSV D to changes
in SNR, and αSV D should converge down to βSV D with increasing SNR. These properties
are verified in Figures 11D through F, where βSV D (red circles) and αSV D (back dots) are
plotted versus SNR for the TORC measurements (the only caveat is that at very low SNRs,
βSV D becomes unstable). It is concluded (with additional support from our simulations)
that at moderate to high SNRs, the effect of non-systematic error is accurately removed
in the computation of βSV D. Therefore, βSV D estimates the proportion of the systematic
part of the STRF measurement relegated to the SVD remainder, and better reflects the true
STRF’s structure. To be conservative, we will consider βSV D only in those measurements
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Figure 11: Sufficiency of the SVD approxi-
mations as a function of the error level. A–C:
αSV D, the proportion of the STRF measure-
ment’s power lost from the SVD approxima-
tions, for all TORC (black o’s) and STWN
(red x’s) measurements. D–F: βSV D (red
o’s) and αSV D (back dots) versus SNR for
all TORC measurements. βSV D estimates
the proportion of the systematic part of the
STRF measurement relegated to the SVD
remainder, and therefore better reflects the
true STRF’s structure. At very low SNRs,
βSV D is unstable (some points lay beyond
the axis limits). G–I: βSV D versus SNRcor

for all TORC measurements with SNR above
1.5. Black +’s and red x’s denote those mea-
surements optimally approximated by rank-1
(separable) and rank-2 (non-separable) matri-
ces, respectively. With β

(1)
SV D (G) typically as

high as 25%, many STRFs are not well de-
scribed by the rank-1 approximations. In con-
trast, β

(2)
SV D (H) and β

(QS)
SV D (I) are typically

well below 10%, indicating that all STRFs
are well described by both the rank-2 and
quadrant-separable approximations. The un-
usually high βSV D’s at the lowest SNRcor’s
indicates that the SVD is unable to resolve
the structure of some non-separable STRFs
with high error levels. J–L: α̂SV D, computed
as αSV D but from the quadrant-separable (J,
K) and the rank-2 (L) approximations of the
TORC (black o’s) and STWN (red x’s) mea-
surements. M–O: As expected, the α̂SV D’s
are well matched to the corresponding to
βSV D’s in those TORC measurements with
SNRcor above 2.

with SNR’s over 1.5.
The relationship between βSV D and SNRcor for the 82 TORC measurements meeting

this criterion is plotted in Figures 11G through I. The blue +’s and red x’s denote the 50
and 31 measurements optimally approximated by rank-1 and rank-2 matrices, respectively
(the lone rank-3 approximation is not shown). At moderate to high SNRcor’s (e.g., above
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2), the βSV D distributions are only weakly dependent on SNRcor. In other words, the
SVD approximations are only weakly affected by measurement errors, and therefore βSV D

should more accurately reflect the structure of the true STRF. Therefore, the typical range
of β

(1)
SV D (11G), roughly from 3% to 25%, indicates many STRFs are poorly described by

rank-1 approximations. It is reassuring that the lower and upper portions of this range are
dominated by the measurements optimally approximated by rank-1 and rank-2 matrices,
respectively. However, the boundary between the two populations progressively shifts from
about 5% at the highest SNRcor to nearly 15% at the lowest SNRcor. This reflects the
fact that the optimal trade-off between error reduction and signal loss afforded by the SVD
approximations gets worse as SNRcor decreases; at higher error levels, the true STRF must be
further from being rank-1 before the second separable matrix of the SVD becomes dominantly
signal and is included in the approximation.

Over this same range of suitably high SNRcor’s, β
(2)
SV D (H) and β

(QS)
SV D (I) are universally

bound below 10%, with averages of 3.1% and 3.6%, respectively. That is, the true STRFs are
almost completely contained within both the rank-2 and quadrant-separable approximations
of TORC measurements with suitably low error levels. Indeed, as was illustrated in Section
3.1.4, the two approximations were usually very similar.

When SNRcor is low, a handful of measurements have conspicuously high values of β
(1)
SV D

(G), β
(2)
SV D (H), or β

(QS)
SV D (I). There are three plausible reasons for this: (1) The systematic

errors in these measurements are unusually large (thus inflating βSV D); (2) The true STRFs
are actually poorly described by these SVD approximations, and coincidentally the measure-
ments have a high error level; (3) Because of the high error level, the SVD of these STRFs
shapes is being disrupted, and more STRF power is being lost than otherwise would be. We
favor the last reason, since (despite the error level) most of these STRFs appear to have
non-separable shapes. Such STRFs are are also found at higher SNRcor’s, but these high
values of β

(2)
SV D and β

(QS)
SV D are not found at higher SNRcor’s.

Although they are needed to fully describe many STRFs, the trade-off to using the rank-
2 or quadrant-separable approximations instead of the rank-1 approximations is that they
retain a higher proportion of the measurement error. This was earlier indicated in Figures
8A and B. Similarly, for the these TORC measurements, we estimated (using the bootstrap
method) that the SNR of the rank-1 approximation is on average 3.4±0.6 times higher than
that of the raw measurement, while for the rank-2 and quadrant-separable approximations,
the average gain in SNR is reduced to 2.0 ± 0.6 and 1.9 ± 0.6, respectively. Note that
these values are comparable to the SNRcor gain values g employed in Section 3.2. Although
the rank-1 approximations have higher SNRs, which means that they remove proportionally
more noise than signal from the measurements, the proportion of signal removed (as gauged
by βSV D) is unacceptably high for many STRFs.

In order to cross-check the results obtained from βSV D, we recomputed αSV D from the
SVD approximations (denoted by α̂SV D), rather than from the raw measurements. For
example, if the quadrant-separable approximation is indeed a complete and relatively error-
free version of the true STRF, then computing α̂

(1)
SV D and α̂

(2)
SV D from it should yield results

close to the corresponding β
(1)
SV D and β

(2)
SV D (from the raw STRF measurement). Similarly,

computing α̂
(QS)
SV D from the the rank-2 approximation should yield a result close to β

(QS)
SV D.

These α̂SV D’s are plotted in Figures 11J through L versus SNRcor for both the TORC
and STWN measurements. With respect to the original αSV D’s in 11A through C, they
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are more tolerant to changes in SNRcor over a wider range of SNRcor’s. When SNRcor is
above 2, these α̂SV D’s are indeed closely matched to the corresponding βSV D’s, as Figures
11M through O attest. When SNRcor drops below 1, the α̂SV D’s rapidly increase and
lose their correspondence with βSV D, presumably because the assumption that the SVD
approximations are complete and error-free rapidly breaks down.

In this section, we have concentrated on the TORC measurements. They are ideal in
that they produced low levels of systematic error and a wide range of SNRcor’s. The STWN
measurements were less than ideal in that SNRcor was limited below 2. In Section 3.3.1,
this was found to be chiefly due to high levels of stimulus-induced systematic error; indeed
βSV D was grossly inflated in these measurements, rendering it no more illuminating than
αSV D (not shown). Nevertheless, over the range of SNRcor that they can be compared,
the distributions of αSV D in Figures 11A through C and α̂SV D in J through L were very
similar for the STWN and TORC measurements. Moreover, from Section 3.2, the SVD
approximations of STWN and TORC measurements were increasingly well matched as the
error level dropped. Therefore, the available evidence supports the hypothesis that, for
a given level of measurement error, the STWN results and TORC results are equivalent,
but the STWN results are much more error prone. The dynamic-ripple results were less
than ideal in that STRFDR is quadrant-separable by construction. Additionally, it contains
non-uniformly distributed errors (Depireux et al., 2001), which complicates both the SVD
(Stewart, 1993) and the interpretation of SNRcor. With this caveat, we note that the

distribution (although not the range) of β
(1)
SV D was skewed toward somewhat higher values in

the dynamic-ripple measurements. For instance, β
(1)
SV D exceeded 10% in 61% of STRFDR’s

versus 45% of STRFTORC’s. Still, β
(2)
SV D was below 5% in 91% of STRFDR’s; the indications

were that most STRFDR’s were still well described by rank-2 approximations.
In summary, the optimal SVD approximation of an STRF measurement with a sufficiently

low error level (e.g., SNRcor above 2) does well describe the STRF, in that it preserves at
least 90% of the STRF’s power. Therefore, we can be confident that if the SVD approx-
imations of two STRF measurements are well matched, so are the corresponding STRFs.
However, when there exist higher levels of measurement error, this is no longer guaranteed
to be the case, particularly for STRFs that contain a significant non-separable component.
Overall, around 60% of the TORC measurements were well described as being separable.
The rest were better served by both rank-2 and quadrant-separable approximations, which
were essentially identical. To the extent that they could be compared, the STWN and
dynamic-ripple measurements produced similar results.

4 Discussion

The STRF defines the space of spectrotemporal patterns that exert a linear influence on a
neuron’s firing rate. A random exploration of this space, fostered by the traditional method-
ology of reverse correlation, has been the basis of most previous STRF measurements. In-
stead, we applied a deterministic and analytical reformulation of reverse correlation, which
is based upon the Fourier-series description of dynamic spectra. One advantage of this ap-
proach concerns experimental optimization: It enables us to restrict the stimulus space to
a minimal, discrete set of spectrotemporal patterns (the spectrotemporal modulation fre-
quencies, presented simultaneously or individually). It also facilitates our understanding of
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measurement errors and their various stimulus- and response-induced components. In sum,
it enables us to design stimuli that are optimally efficient and effective, while taking into
account general knowledge of the STRF structure, response nonlinearity and variability, and
specific laboratory constraints. A second advantage concerns experimental evaluation: Since
any given dynamic spectrum can be described by its Fourier series, we can understand and
quantify the performance of different stimulation methods, even if they were devised within
different frameworks. Both of these advantages have been demonstrated in this study, where
we have measured STRFs of AI neurons with three very different types of stimuli.

We now discuss the major empirical results of this study.

4.1 Linearity

The most striking finding is that when the STRF of an AI neuron is successfully measured
with different types of stimuli, the results are very similar. The STRFs themselves exhibit
a high degree of richness and diversity across neurons. The three types of stimuli used,
Dynamic Ripples, TORCs, and STWN differ greatly in their spectrotemporal characteristics
and statistics (c.f. Figures 2, 3A, 4A, and 5A), and indeed they sound quite distinct from one
another. Great differences even exist between stimuli of a given type (except for STWNs,
which all sound noise-like). STRFs measured from such widely different stimuli cannot be
the same unless these neurons’ responses are strongly linear with respect to the dynamic
spectra of stimuli. Strong nonlinearities would not allow the STRFs generated from such
different stimuli to have such large correlation coefficients (except trivial cases such as static
nonlinearities, e.g., rectification). The correlation coefficients are especially large considering
that they were computed over regions of the measurements containing little STRF power
but still containing errors (even after the SVD), and furthermore the total duration of all
stimulus presentations often exceeded an hour.

4.2 Efficacy of the stimuli

Although, when successful, they lead to very similar STRF measurements, the three types
of stimuli differ in their rates of success. Success is achieved when the STRF measurement
contains sufficiently low levels of both non-systematic and systematic errors, reflected by the
measures of SNR (using only non-systematic error) and SNRcor (including systematic error).
Non-systematic errors, caused by response variability, are reduced when the modulations
in the stimulus are more powerful (evoking stronger modulations in the response relative
to the average spike rate), and also by averaging the results from stimuli with identical
spectrotemporal statistics. Systematic errors, caused when multiple stimulus components
evoke interfering response components (either linearly or nonlinearly), are reduced by careful
stimulus design, or by averaging the results from stimuli with identical spectrotemporal
statistics (but different individual characteristics). Note that all of the stimulus types used
had approximately the same total presentation duration.

On balance, the stimuli that gave the best results were TORCs, which benefitted from
careful stimulus design and relatively strong responses. As a result, we have noted that usable
STRF measurements could have been obtained after presenting one sweep of each TORC
stimulus (taking about 3 minutes), a fact that we intend to exploit in the future. STWN,
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while strongly motivated by the traditional reverse correlation methodology, gave STRFs
with substantially more systematic error than TORCs. While both stimuli are capable of
giving STRFs with high SNR, the STWN results in substantially poorer SNRcor. This is
most cleanly seen by comparing figure panels 9A and 9D: both stimulus types give STRFs
with SNR as high as 30, but STWN generated STRFs have SNRcor that saturate below 2,
while TORC generated STRFs have SNRcor saturating at substantially higher values.

Although the dynamic-ripple stimuli produce the most reliable results (highest SNR),
they suffered a fundamental flaw: Too many stimuli were required to measure the full MTFST

(and hence its STRF), and so measurements were restricted a subset of stimuli required if
the MTFST is quadrant-separable. This is problematic for two main reasons. First, it makes
it impossible to assess the quadrant-separability assumption directly. Although quadrant-
separability holds in (ketamine-anesthetized) AI, there may be other neuronal populations
or experimental conditions for which it doesn’t. Second, the full MTFST measurement is a
more complex (nonlinear) function of the individual stimulus-response relationships. This
complicates the evaluation of measurement errors, and thus blurs the distinction between
neural functionality and methodological artifact. Indeed, the dynamic-ripple results had a
few subtle idiosyncrasies, including more non-separable STRFs, and SNRcor’s poorly corre-
lated with other assays of measurement errors (SNR) and STRF structure (αSV D, βSV D).
However, since the measurements are so reliable, it may be feasible to sacrifice some SNR by
reducing the number stimulus repetitions in order to present all stimuli required to directly
measure the full MTFST (Versnel et al., 2002).

Finally, we note that the TORC approach is not limited to the particular stimuli used
in this study. Any combination of spectrotemporal modulation frequencies could exist in
each stimulus, provided that they are temporally orthogonal. Therefore one can produce
“super” TORCs, using fewer (but longer-duration) stimuli, each of which contains many
spectrotemporal modulation frequencies (Klein et al., 2000). These stimuli are more noise
like, but benefit from a lack of stimulus-induced systematic measurement errors in contrast
to the STWN stimuli. We are currently investigating the effectiveness of such stimuli.

4.3 The SVD: error reduction and signal loss

In this paper, we used the SVD to reduce errors in the STRF measurements. The SVD
is ideally suited for use with the STRFs measured here, because their SVD is strongly
dominated by the lowest order terms; that is, they are well approximated by a small number
of fully separable (rank-1) matrices. When such STRFs are perturbed by unstructured errors,
the SVD is still strongly dominated by the lowest order terms, and has a well-understood
contribution from higher order terms. The boundary between the low order (high signal,
low error) and high order (low signal, high error) terms is not known a priori, but is well
understood from signal detection theory. The upshot is that truncating the SVD series of
an STRF at low order is an efficient and well-understood way of increasing SNR while
minimizing loss of signal.

Of the STRF measurements that were suitably error-free, more than half were not only
optimally approximated but well approximated (as reflected by βSV D) by fully separable
(rank-1) matrices. These approximations reduced the error power by at least a factor of
3 while sacrificing less than a tenth of the signal power. The rest of the STRFs required
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two SVD terms (rank-2 approximations); using only one SVD term (rank-1) would give an
incomplete view of the system functionality due to excessive signal loss. The rank-2 approx-
imations have somewhat diminished error reduction, down to a factor of 2. Alternatively,
the quadrants of the MTFST could be approximated by fully separable matrices, producing
results very similar to the rank-2 approximations. However, if the error level was too high
(e.g., SNRcor below 1), the optimal SVD approximations no longer reliably achieved both
significant error reduction and adequate signal retention. The error level should always be
considered when interpreting the results of the SVD.

4.4 The SVD: functional implications

It is intriguing that STRFs are equally well described by rank-2 and quadrant-separable
approximations (see Figures 11H and I). These properties, each special in their own right,
do not necessarily imply one another. It turns out that if an STRF is both rank-2 and
quadrant-separable, special phase relationships must exist, in either the temporal or spec-
tral dimensions (or both), between the separable matrices of the SVD or equivalently the
quadrants of the MTFST. It has been demonstrated (Simon et al., subm) that AI STRFs
possess this property in the temporal dimension (but not necessarily the spectral). This
itself has strong theoretical implications for the network connectivity of those neurons.

4.5 The error measures

We found that incorporating systematic errors (otherwise known as bias) into our consider-
ation of the total measurement error level is absolutely crucial for aligning the results from
different types of stimuli, and thus understanding the structure of an STRF measurement
(and the resulting SVD approximations, correlation coefficients, etc.) independent of stim-
ulus type. We used and analyzed two different measures of error: SNR and SNRcor. SNR
is the more classical but more limited of the two; SNR is the ratio of the measured STRF
power to the measured STRF variance (square of the standard error). This definition of SNR
(and its associated measure of error) is not able to incorporate systematic error, however. In
contrast, SNRcor does incorporate systematic error. SNRcor is the ratio of measured STRF
power to measured non-STRF power (e.g., the power in the spectrotemporal region where
the underlying STRF is expected to have near-zero power).

The only problem with SNRcor is that it requires assumptions about the structure of
the errors and the STRF, which may not apply to all STRFs and stimuli. In particular,
we assumed (based primarily on observations) that errors are evenly distributed over the
measurements, and that the STRF power is near zero for τ above 125 ms (using negative τ ’s
is no different since the stimuli were periodic). The usefulness and predictability of SNRcor

demonstrated that these assumptions largely held for the TORC and STWN measurements.
This was not the case for the dynamic-ripple measurements, however, likely due to a combi-
nation of response nonlinearity and the nonlinearity of the STRF measurement itself, which
distributes the errors non-uniformly in the spectrotemporal (and modulation frequency) do-
main. It will be even more useful in the future to devise measures of the systematic errors
that are less dependent on the structure of the STRF measurement.
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4.6 Response variability

In our investigation of non-systematic errors in the STRF measurements, several observa-
tions concerning the variability of AI responses have interesting functional implications. For
example, the fact that the response variance could be linearly predicted from the average
spike rate in a nearly stimulus-independent manner points to a Poisson-like spike generation
mechanism, which has been vigorously investigated in the visual system (Shadlen and New-
some, 1998). Additionally, we found (see Figure 10C) that while neurons with higher-power
STRFs (higher P ) tended to fire more spikes (higher r̄, as might be expected from a linear-
plus-rectification response model), a range of average spike rates were still observed for any
given STRF power. Neurons with the lowest spike rates (for a given P ) corresponded to the
highest-SNR STRFs, and had the sharpest, most phase-locked responses of the population
(not shown). Neurons with the highest spike rates often had seemingly random responses
and poor-quality STRF measurements. We will consider the origins and implications of such
behavior more carefully in future studies.

4.7 Related studies

Other recent studies have also addressed the similarity of STRF measurements with different
types of stimuli, albeit in different auditory loci. Escab́ı and Schreiner (Escab́ı and Schreiner,
2002) measured STRFs in cat inferior colliculus (IC) with stochastic stimuli that in some
respects resemble the dynamic-ripple stimuli and STWN used here. While their results
largely agree with ours, they singled out a small group of neurons that either exhibited
extremely selective and phase-locked responses to the dynamic-ripple-like stimuli but were
unresponsive to the STNW-like stimuli (type-II neurons), or exhibited non-phase-locked
nonlinear responses to both stimuli (type-III neurons). As discussed above, in AI we also find
that neurons’ responses can be extremely sparse and yet yield significant STRFs (like their
type-II neurons). However, we did not observe two distinct populations of neurons; rather,
the degree of phase locking in response to all stimuli ranged over a continuum. In addition,
some AI neurons exhibited significant spike rates but poor STRF measurements (like their
type-III neurons). Although we have not yet found a nonlinear relationship between these
responses and the dynamic spectra of the stimuli, we can not yet rule out that possibility.
In another study, Theunissen et. al. (Theunissen et al., 2000) measured STRFs in the zebra
finch auditory forebrain in response to random tone sequences and bird songs, and used
the STRF from one stimulus to predict the responses to the other. They found small but
significant differences in the cross-predictability of the responses, which was poor overall.
These differences either reflect differences in the STRF-measurement method (which was
there a nonlinear function of the responses), or more probably reflect a higher degree of
nonlinearity in the responses of neurons in the avian auditory forebrain with respect to
mammalian AI (but see (Schafer et al., 1992)).

4.8 Nonlinearity

This article has been concerned with nonlinearities only insofar as they interfere with the
STRF measurement, and methods were invoked to reduce this interference (e.g., the inverse-
repeat method). Other methods are also available, such as more carefully choosing the
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temporal modulation frequencies in the TORCs, so that the nonlinear distortion products
are also orthogonal to the linear response (a la (Victor and Shapley, 1980)). That is not so
say that nonlinearities form an insignificant part of the AI response, merely that linearity
is important, strong, and robust to changing stimulus conditions, and therefore forms an
sturdy foundation upon which the study of auditory cortical processing can be based, even
in its nonlinear aspects.

We are currently investigating several anticipated nonlinearities. These include the non-
linear transformation of responses occurs at the thalamo-cortical depressing synapse, which
contributes a rapid adaptation of onset responses towards a steady state within a few tens of
milliseconds (Denham, 2001; Kowalski et al., 1996a; Phillips et al., 2002; Heil, 1997) (we con-
sidered only the steady-state response in this study). Additionally, we have observed that
when stimuli contain both low and high modulation frequencies, AI responses can phase
lock to much higher frequencies than previously expected (e.g., 100−200 Hz) (Elhilali et al.,
2004). Similar effects have been observed in the visual system (Bair and Koch, 1996; Reid
et al., 1992; Chance et al., 1998). In our stimuli, these high modulation frequencies result
from interactions between unresolved AM tones (that fall within the bandwidth of the same
cochlear filter), even though they were not part of the target dynamic spectrum (and there-
fore did not contribute to the STRF measurement). A third nonlinearity is the potential
dependence of responses on the bandwidth of the stimulus. Broadband sustained stimuli
(such as the ripples, TORCs, and STWN) likely bias cortical cells in a manner different
from that of narrowband or transient stimuli such as tones and clicks. Consequently, pre-
dicting details of tone and click responses from the STRF may prove sometimes problematic
(Kowalski et al., 1996b; Theunissen et al., 2000). However, this nonlinearity is irrelevant
when the focus is on comparing STRFs derived from similarly broadband and sustained
stimuli, as is the case in this paper. Yet another important source of nonlinear effects are
static nonlinearities (e.g., rectification, response saturation) with respect to stimulus level
and contrast. By fixing stimulus contrast at near maximum (90%), and the absolute level
at an intermediate value (e.g., based on the rate-level function (Kowalski et al., 1996b) we
have managed to obtain reliable reproducible results from a sizable proportion of cells in A1.
Finally, there are fundamental nonlinearities that we have not yet convincingly observed in
AI responses, such as units analogous to the complex cells of the visual cortex (De Valois,
R.L. and De Valois, K.K., 1990). Nevertheless, it is likely that a significant proportion of
the very low SNR STRFs observed in this study belong to cells that would be classified as
nonlinear in that they either phase-lock poorly to our stimuli or respond to more complex
patterns that we have not been able to probe (e.g., see (Escab́ı and Schreiner, 2002)).
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